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Abstract—In recent decades, the severity of climate change
has led to a rise in the frequency of agricultural pest attacks on
farms causing significant economic damage and food shortages.
Effective management of pests, specifically Camouflaged pests,
poses significant challenges in agriculture, requiring accurate
automated detection and segmentation. In this study, we lever-
age state-of-the-art object detection and segmentation models,
specifically the single-stage YOLOv8 model, fine-tuned on a large-
scale Unified Benchmark Camouflaged Object Detection Dataset
(UBCODD) consisting of 52,447 images. Furthermore, we extend
our analysis to benchmark agricultural pest datasets such as
IP-102 and the Locust-Mini Dataset, showcasing competitive
performance metrics. This integrated approach allows us to
capture agricultural camouflaged pests with greater detail and
accuracy. Our findings lay the groundwork for the advancement
of single-stage object detectors and segmentation models in the
field of agriculture. Moreover, we contribute to open-source
initiatives in agricultural technology by generating bounding
box annotations for the entire IP-102 and binary masks for
the Agricultural Pests Image Dataset. This research signifies
a significant advancement in agricultural pest recognition and
segmentation using cutting-edge computer vision technologies.

Index Terms—Camouflaged Pests, Camouflaged Object Detec-
tion, Pest Detection, UBCODD, Camouflaged Segmentation

I. INTRODUCTION

Insect pests pose a relentless threat to agricultural pro-
duction, jeopardizing both the quality and quantity of crops.
This issue leads to significant financial losses for agricultural
nations, especially in regions like Asia, Africa, and South
America, where undetected infestations can notably impact
food security [1]–[7]. Traditional pest detection methods, re-
liant on manual identification by agricultural experts, are time-
consuming, subjective, and costly, particularly for large farms
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[8]. Hence, there is an need for more efficient, automated, and
objective solutions for pest detection.

Advancements in computer vision offer promising alter-
natives for insect pest recognition systems. These systems
have the potential to revolutionize agricultural practices by
significantly improving detection efficiency and overcoming
limitations associated with manual detection [7], [9], [10].
However, a critical aspect of robust automated pest detection
lies in addressing the diverse camouflage capabilities of agri-
cultural pests, which pose challenges in real-world agricultural
settings along with variations in lighting, viewpoint, and
environmental complexity.

Many agricultural pests have camouflage abilities, which
they employ as a survival technique [11]. Agricultural pests
often blend seamlessly with their surroundings, making them
difficult to identify, as can be seen in figure 1. In such scenarios
requiring real-time camouflaged object detection, a lightweight
model is highly beneficial. We fine-tuned YOLOv8 detection
and segmentation models using the Unified Benchmark Cam-
ouflaged Object Detection Dataset (UBCODD). These fine-
tuned models were then applied to benchmark agricultural
pest datasets, achieving notable results in pest detection and
segmentation.

This paper makes the following contributions to the field of
agricultural camouflage pest detection and segmentation:

• Creation of a Unified Benchmark Camouflaged Object
Detection Dataset (UBCODD): We combined major COD
datasets and prepared ground truth labels in YOLO for-
mat for detection and segmentation.

• Fine-tuning of YOLOv8 Models: We fine-tuned YOLOv8
models for both detection and segmentation tasks on
UBCODD, achieving comparable benchmark accuracies



while enabling near real-time inference capabilities for
detecting and segmenting camouflaged pests.

• Evaluations on Agricultural Pest Datasets: The optimized
models were rigorously evaluated on benchmark agri-
cultural pest datasets, including IP102 [12] and the
Locust Mini-Dataset [13], establishing new benchmarks
for detection performance in the agricultural sector.

• Open-Source Contributions: In support of collaborative
research and innovation, the UBCODD dataset, including
ground truth labels and pre-trained model weights, are re-
leased. Furthermore, bounding box annotation for IP102
dataset [12] and binary masks for the Agricultural Pests
Image dataset [14] were generated to facilitate further
research and qualitative analyses in pest detection.

These initiatives aim to fill current research gaps and offer
practical, technologically advanced solutions for enhancing
agricultural pest management strategies.

Fig. 1: Sample images from the IP-102 dataset depicting pests
camouflaging with their surroundings [12].

The paper is organized as follows: Section II reviews litera-
ture in the fields of agricultural pest recognition and COD.
Section III outlines the process of creating the UBCODD
dataset, including label generation, model selection, training
optimization, and evaluation methodology on benchmark agri-
cultural datasets. Section IV presents our findings on COD and
agricultural datasets. Finally, Section V concludes the paper
and discusses our open-source contributions.

II. RELATED WORKS

In this section, we provide an overview of existing research
on agricultural pest detection and camouflaged object detection
and explore the interrelation between these two domains.

A. Agricultural Pest Detection

Liu et al. proposed EG-PraNet, an improvement on PraNet
[13], which utilizes the Group Reverse (GR) module for
efficient feature extraction and incorporates data augmentation

to enhance model robustness in detecting locusts. Similarly,
Zhang et al. [15] addressed low efficiency and unreliable
cotton pest detection by employing ECA for complex back-
grounds, focal loss for imbalanced samples, and hard swish
activation for improved performance. A two-stage pest de-
tection method was presented by Chen et al. [16], with a
context feature enhancement module, the region of interest
(RoI) feature fusion module, and the non-task separation
module, achieving a high mAP of 72.7% on the SimilarPest5
dataset. Additionally, Yang et al. [17] achieved reduced model
complexity and faster detection for maize pest identification by
replacing network modules with efficient alternatives, demon-
strating the potential for lightweight models in agriculture.

Much of the current research in agricultural pest detection
targets specific pest categories [13], [15]–[17]. While this
approach has yielded valuable advancements, it limits the ap-
plicability of these methods to the vast diversity of agricultural
pests encountered in real-world scenarios. A crucial, unifying
characteristic is the ability of agricultural pests to camouflage
themselves within their environment [11]. Recognizing this
shared property, several curated pest detection datasets, such
as Locust-mini [13], leveraged relevant images from estab-
lished camouflaged object detection benchmarks like COD10K
[18] and CAMO [19]. This reliance on general camouflage
object datasets underscores the significance of addressing pest
detection through the lens of camouflage.

B. Camouflage Object Detection

Various methods have been explored to achieve accu-
rate camouflaged object segmentation. One approach involves
designing novel network modules [19], [20]. Le et al.’s
Anabranch Network use a dual-branch approach to improve
both object identification and segmentation accuracy by com-
bining classification and segmentation tasks [19]. Zhou et al.
proposed the Feature Aggregation and Propagation Network
(FAP-Net), incorporating the Boundary Guidance Module
(BGM) to enhance segmentation accuracy [20].

Another strategy leverages multi-task learning frameworks
by incorporating auxiliary tasks alongside the primary segmen-
tation task [21]–[23]. For instance, Lamdouar et al. introduced
a registration module highlighting object boundaries and a seg-
mentation module for detecting moving objects [21]. Another
approach involves using an MGL model to effectively leverage
high-order relations of graphs to locate camouflaged objects
and enhance their boundaries [22]. Additionally, Zhong et al.
innovatively applied frequency domain to enhance segmenta-
tion accuracy through a frequency enhancement module [23].

Although advancements in segmentation models produce
commendable accuracy yet achieving a balance between accu-
racy and real-time performance is necessary. This prioritization
necessitates models optimized for fast inference. For this
purpose, we used a lightweight single-staged object detector
and segmentation model, YOLOv8. By leveraging a compre-
hensive and intricate training dataset, we achieved significant
results for agricultural pest detection through fine-tuning COD
datasets.



III. METHODOLOGY

This section provides an overview of the methodology used
in our research, detailing the systematic approach to dataset
unification, model fine-tuning, and adaptations for agricultural
pest detection.

A. UBCODD: a Unification of the Benchmark Datasets

This subsection outlines the creation of the Unified Bench-
mark Camouflaged Object Detection Dataset (UBCODD),
formed by combining five benchmark COD datasets [18],
[19], [21], [24], [25]. This integration enhances the diversity
and complexity of camouflage scenarios for training and
evaluation, which is essential for improving detection accuracy
in real-world applications.

TABLE I: Dataset Information.

Dataset Number of Images
COD10K [18] 10000

MoCA [21] 37000
NC4K [24] 4121

CHAMELEON [25] 76
CAMO [19] 1250

UBCODD, comprising 52,447 images, represents a com-
prehensive resource for developing and evaluating camouflage
detection and segmentation models. Table I details the datasets
integrated into UBCODD.

UBCODD is organized into three main categories: train-
ing, validation, and testing, ensuring its suitability for model
development and evaluation. Figure 2 represents the process
for generating YOLO format labels from binary masks, aiding
in both object detection and segmentation tasks. This process
streamlines the dataset’s use for training and evaluation tasks.
UBCODD represents a significant advancement in the field of
camouflage object detection, providing researchers with a solid
foundation for advancing the SOTA models in this domain.

B. Fine-Tuning the YOLOv8 Object Detection & Segmentation
Models

This subsection evaluates YOLOv8, a highly recognized
model known for its efficiency in real-time object detection
and segmentation tasks [26]. YOLOv8’s lightweight design,
precision, and fast inference make it particularly suitable for
real-time applications. Its performance is assessed using the
MS COCO dataset, a widely recognized benchmark [27].

To adapt YOLOv8 to the specific domain of camouflage
object detection and segmentation, it was fine-tuned with
the UBCODD dataset, utilizing different variants such as
YOLO XLarge, Medium, and Nano. This involved initializing
YOLOv8 with pre-trained weights from MS COCO and then
training it further on UBCODD. For object detection training,
a batch size of 32 was employed over 150 epochs, with testing
conducted on the COD10K test dataset. For segmentation,
a batch size of 16 was maintained over 100 epochs, with
evaluations on the COD10K, CAMO, and CHAMELEON test
datasets to compare against other SOTA models.

Fig. 2: The process of label creation followed by the subse-
quent integration of both the labels and the original image into
the model for training, for both detection and segmentation.

To ensure model stability and prevent overfitting, a patience
level of 25 was implemented. If the validation loss failed
to improve for 25 consecutive epochs, the training process
was terminated. This approach aimed to enhance YOLOv8’s
performance in detecting and segmenting camouflaged objects
within the UBCODD dataset. Experiments were conducted
using an NVIDIA TITAN RTX 24 GB GPU.

The fine-tuning efforts were particularly focused on adapt-
ing YOLOv8 for accurate detection and segmentation of
agricultural pests, showcasing the model’s applicability to
challenges in agriculture camouflage pest detection.

C. Fine-Tuning UBCODD’s YOLO Model for Agricultural
Pest Detection and Segmentation

Insect pests significantly impact agricultural product yield,
necessitating accurate recognition for timely preventive mea-
sures to mitigate economic losses. Building upon the effective-
ness demonstrated by our YOLOv8 model on the challenging
UBCODD dataset, we aimed to assess its applicability to agri-
cultural pest detection and segmentation tasks. To achieve this,
we incorporated two additional benchmark datasets: IP102
[12], and Locust-Mini [13].

1) IP102: A Large-Scale Benchmark Dataset for Insect Pest
Recognition: IP102 dataset [12], encompassing over 75,000
images across 102 pest categories, exhibiting a natural long-
tailed distribution. Approximately 19,000 images are annotated
with bounding boxes for object detection. IP102 adopts a
hierarchical taxonomy, grouping insect pests affecting spe-
cific agricultural products into the same upper-level category.
Leveraging our UBCODD fine-tuned YOLO detection model,
we apply it to detect the provided 19,000 labels on the dataset,



further fine-tuning it on the training dataset. We evaluate
the model’s performance on detection standard metrics and
compare the results with other SOTA models on the test
dataset.

2) Locust-Mini Dataset: Locusts pose a serious threat to
global food security, capable of causing widespread damage
and economic loss through massive, migratory swarms. Tradi-
tional detection methods face challenges due to their adeptness
at camouflage.

To address this challenge, we directly evaluate our fine-
tuned detection and segmentation models on the Locust-Mini
[13] test dataset. As the training dataset is not publicly avail-
able, we utilize the test dataset comprising diverse images of
locusts, including camouflaged ones sourced from benchmark
datasets like COD10K and the internet. We assess the models’
performance on the defined evaluation metrics and compare it
with other SOTA models for benchmarking purposes in case
of segmentation task.

IV. RESULTS & ANALYSIS

In this section, we define standard evaluation metrics for
object detection and segmentation. We then present results
from training various YOLOv8 models (xlarge, medium, nano)
on the UBCODD dataset and compare them against SOTA
models. Finally, we apply these fine-tuned models to an agri-
cultural pest detection and segmentation benchmark dataset
to evaluate their generalization capability and performance
against SOTA models in this domain.

A. Evaluation Metrics

1) Object Detection: The following metrics are used for
evaluating the performance of object detection:

– Precision: Ratio of true positives to the total number of
positive predictions.

Precision =
Tp

Tp+ Fp
(1)

– Recall: Proportion of true positives correctly identified
by the model.

Recall =
Tp

Tp+ Fn
(2)

– Mean Average Precision (mAP): Average of the preci-
sion values calculated for each class.

– mAP[0.5:0.95]: Mean Average Precision over different
Intersection over Union (IoU) thresholds, from 0.50 to
0.95.

2) Object Segmentation: Below are the primary metrics
used to evaluate the performance of object segmentation:

– Structure Measure (Sα) [28]: It aims to gauge the
structural similarity between the regional perception (Sr)
and object perception (So). It is defined by

Sα = α× So + (1− α)× Sr (3)

where α ∈ [0, 1] is a trade-off parameter and it is set to
0.5 as default.

– Enhanced-Alignment Measure (αE) [29]: Assesses both
pixel-level similarity and image-level statistics concur-
rently, aligning with human visual perception. It is
defined by

αE =
1

w × h

w∑
x=1

h∑
y=1

ϕFM (x, y) (4)

where ϕFM is the enhanced alignment matrix of the
foreground map; and h and w are the height and the
width of the map, respectively.

– Weighted F-Measure (wF): This represents a harmonic
mean of precision and recall, as in:

wF =
(1 + β2)× Precision × Recall

β2Precision + Recall
(5)

The weighted F-measure allocates distinct weights, β, to
precision and recall, a useful feature when one of these
metrics is deemed more significant than the other.

– Mean Absolute Error (M): is the average pixel-level
relative error between the ground truth (G) and the
normalized prediction (S), defined as:

M =
1

W ×H

W∑
i=1

H∑
j=1

|S(i, j)−G(i, j)| (6)

Both the ground truth and normalized prediction are
normalized to [0, 1].

B. YOLOv8 Model Results: Object Detection and Segmenta-
tion on Benchmark Datasets

The YOLOv8 model represents a SOTA single-stage
model [26]. In this subsection, we present the results obtained
by various versions of the YOLOv8 for both detection (v8x,
v8m, v8n) and segmentation (v8Segx, v8Segm, v8Segn) mod-
els on benchmark datasets. We compare these results against
SOTA models in the segmentation domain.

1) Detection: For the task of object detection, we fine-tuned
three different YOLOv8 variants – YOLOv8n, YOLOv8m, and
YOLOv8x – on the UBCODD dataset. This dataset contains
generated bounding box labels for each image, as detailed
in the subsection III-A. The model’s performance improved
steadily with each epoch during training, as depicted in
Figure 4. We then tested these models against the benchmark
COD10K testing dataset [18]. The results of this experiment
are shown in Table II.

TABLE II: Object Detection Performance Metrics on
COD10K test dataset.

Model Precision Recall mAP50 mAP50-95
YOLOv8x 0.98 0.91 0.95 0.88
YOLOv8m 0.94 0.83 0.89 0.77
YOLOv8n 0.71 0.45 0.54 0.37

We were unable to directly compare the performance of our
fine-tuned YOLOv8 models against SOTA models because,
unlike segmentation tasks where well-established SOTA mod-
els exist, the field of camouflaged object detection currently



Fig. 3: Visual Performance of the Model. From top to bottom: name of the testing dataset, original images, original ground
truths, ground truths generated by our fine-tuned YOLOv8, and bounding boxes produced by our fine-tuned YOLOv8.

Fig. 4: Improvement in YOLOv8’s Performance While Train-
ing on Precision, Recall, mAP.

lacks a standard benchmark for evaluating object detection
models.

2) Segmentation: We also fine-tuned the YOLOv8 seg-
mentation model on the UBCODD dataset. The results were
then benchmarked on three standard datasets for camouflaged
object detection: CHAMELEON, CAMO, and COD10K [18],
[19], [25]. Table III provides a detailed comparison of evalu-
ation metrics for different SOTA segmentation models. The
findings demonstrate that our fine-tuned YOLOv8 segmen-
tation models outperformed other SOTA models, especially
on the CAMO and COD10K test datasets. Coupled with a
rapid inference time, this performance suggests its capability

to improve object segmentation tasks across diverse real-world
scenarios [26].

The visual performance of our best-performing models,
YOLOv8x and YOLOv8segx, across both segmentation and
detection tasks, is showcased in Figure 3. This aids in under-
standing the generalizability and performance of our model
across diverse benchmark datasets.

C. Using UBCODD-Trained Models for Agricultural Pest
Detection and Segmentation

Building upon the performance of the detection and segmen-
tation tasks on the UBCODD training dataset, this subsection
explores the suitability of these models for detecting and
segmenting agricultural pests. Following an evaluation of the
model’s performance on benchmark COD datasets, we aim to
tackle the concealed and camouflaged nature of agricultural
pests and insects. For this, we utilize two benchmark Pest
Detection datasets, namely IP-102 and Locust-Mini, to further
validate the generalizability and effectiveness of our models
in the agricultural domain.

1) IP102: A Large-Scale Benchmark Dataset for Insect
Pest Recognition: IP-102, initially designed as a benchmark
pest detection dataset primarily for classification tasks, also
includes 19,000 images designated for object detection [12].
Leveraging this detection subset, we fine-tuned our top-
performing object detection model, YOLOv8x. The results of
this fine-tuning experiment, presented in Table IV, demonstrate
that our model outperforms other SOTA models on this dataset.
Furthermore, visual performance analysis of the YOLOv8x
model in Figure 5 showcases its ability to detect camouflaged
pests with high confidence scores. However, we couldn’t fine-



TABLE III: Evaluation metrics for various segmentation models on benchmark datasets.

Method COD10K-Test (2,026 images) CAMO-Test (250 images) CHAMELEON-Test (76 images)
Sα ↑ αE↑ wF↑ M↓ Sα ↑ αE↑ wF↑ M↓ Sα ↑ αE↑ wF↑ M↓

CPD [30] 0.752 0.820 0.557 0.049 0.712 0.813 0.561 0.108 0.860 0.908 0.753 0.044
PraNet [13] 0.768 0.836 0.599 0.047 0.738 0.814 0.613 0.098 0.864 0.918 0.784 0.038
MINet-R [31] 0.759 0.832 0.580 0.045 0.749 0.835 0.635 0.090 0.844 0.919 0.746 0.040
SINet [18] 0.771 0.807 0.565 0.048 0.742 0.834 0.601 0.101 0.869 0.903 0.749 0.041
LSR [24] 0.767 0.861 0.611 0.045 0.712 0.791 0.583 0.104 0.846 0.913 0.767 0.046
PFNet [32] 0.800 0.868 0.660 0.040 0.782 0.852 0.695 0.085 0.882 0.942 0.810 0.033
C2F -Net [33] 0.810 0.875 0.674 0.038 0.791 0.863 0.706 0.083 0.886 0.931 0.824 0.032
MGL [22] 0.811 0.865 0.666 0.037 0.775 0.847 0.673 0.088 0.893 0.923 0.813 0.030
SegMaR (Stage-4) [34] 0.833 0.895 0.724 0.033 0.815 0.872 0.742 0.071 0.906 0.954 0.860 0.025
YOLOv8Seg (Nano) 0.771 0.852 0.652 0.058 0.796 0.844 0.739 0.084 0.818 0.883 0.744 0.045
YOLOv8Seg (Medium) 0.812 0.892 0.710 0.038 0.872 0.913 0.844 0.045 0.870 0.926 0.828 0.031
YOLOv8Seg (Xlarge) 0.834 0.906 0.746 0.033 0.902 0.948 0.886 0.031 0.885 0.947 0.854 0.028

tune and evaluate our segmentation models on this dataset as
the curators didn’t provide any binary masks.

TABLE IV: Object Detection Results on the IP102 [12] Test
Dataset.

Method mAP50 mAP50-95
FPN [35] 0.549 0.281
TOOD [36] 0.439 0.265
SSD300 [37] 0.472 0.215
PAA [38] 0.427 0.252
Dynamic R-CNN [39] 0.507 0.294
Sparse R-CNN [40] 0.332 0.211
YOLOv3 [41] 0.506 0.257
YOLOX [42] 0.521 0.311
C3M-YOLO [43] 0.572 0.349
YOLOv8x (Ours) 0.678 0.434

Fig. 5: Bounding Box Predictions of YOLOv8x on the IP-102
Test Dataset.

2) Locust-Mini: The Locust-Mini dataset contains diverse
images of locusts, including camouflaged ones, gathered from
various benchmark datasets like COD10K and the inter-
net [44]. During the evaluation, we directly performed infer-
ence on different variants of our UBCODD fine-tuned detec-
tion and segmentation models on a test dataset comprising
120 images. Table V showcases the results achieved on the
Locust-Mini dataset by our segmentation model compared to
other fine-tuned SOTA segmentation models and Table VI
showcases the results achieved by our object detection model.
We couldn’t benchmark the detection model against a SOTA

detection model because no such model currently exists for
this specific dataset.

We also illustrate the visual performance in Figure 6. These
results were obtained without further fine-tuning our existing
YOLOv8x detection and YOLOv8Segx segmentation models
due to the unavailability of the Locust-Mini training set during
the experimental phase of our research. Had the training
dataset been accessible, our model could have potentially sur-
passed the existing results, given its comparable performance
even without fine-tuning.

TABLE V: Segmentation Results on the Locust Mini Test
Dataset [44].

Model Sα ↑ αE↑ wF↑ M↓
UNet [45] 0.468 − 0.127 0.120
SINet [18] 0.887 − 0.805 0.024
PraNet [13] 0.812 − 0.676 0.043
Polyp-PVT [46] 0.895 − 0.850 0.018
Improved PraNet [44] 0.886 − 0.811 0.023
YOLOv8Seg (Nano) 0.814 0.916 0.720 0.043
YOLOv8Seg (Medium) 0.845 0.941 0.774 0.033
YOLOv8Seg (XLarge) 0.853 0.950 0.802 0.030

TABLE VI: Detection Results on the Locust Mini Test Dataset
[44].

Model Precision Recall mAP50 mAP50-95
YOLOv8x 0.82 0.72 0.75 0.68
YOLOv8m 0.80 0.68 0.72 0.61
YOLOv8n 0.75 0.65 0.67 0.60

The results of this subsection validate the performance of
our fine-tuned UBCODD detection and segmentation models
on both benchmark datasets, IP-102 and Locust-Mini. As a
result, we are demonstrating the adaptability and effectiveness
of these models in the field of agriculture for both the detection
and segmentation of agricultural pests and insects.

V. CONCLUSION

This paper presented a comprehensive investigation into
the performance of a fine-tuned YOLOv8 model for the
detection and segmentation of agricultural pests, particularly
those with camouflage characteristics. The results from our



Fig. 6: Visual Performance of the Model on the Locust Mini Dataset. From top to bottom: original images, their corresponding
ground truths, ground truths generated by our fine-tuned YOLOv8, and bounding boxes produced by our fine-tuned YOLOv8.

experiments on the Unified Benchmark Camouflaged Object
Detection Dataset (UBCODD) demonstrate the effectiveness
of fine-tuning YOLOv8 models for real-time inference in chal-
lenging agricultural environments. Furthermore, our findings
underscore the potential of state-of-the-art computer vision
techniques in addressing critical challenges in agricultural pest
management.

Fig. 7: Predictions on the Agricultural Pests Image Dataset
[14].

A. Open-Sourcing of UBCODD Dataset

As part of our commitment to advancing research in this do-
main, we plan to open-source the complete UBCODD dataset,
along with prepared ground truth labels, code implementation
for model training and evaluation, and pre-trained model
weights. We believe that sharing these resources with the
research community will facilitate collaboration, reproducibil-
ity, and further advancements in agricultural computer vision.

Figure 7 showcases the compelling results of predicted masks
and bounding boxes for Agricultural Pests Image Dataset [14].

REFERENCES

[1] CM Oliveira, AM Auad, SM Mendes, and MR Frizzas, “Economic
impact of exotic insect pests in brazilian agriculture,” Journal of Applied
Entomology, vol. 137, no. 1-2, pp. 1–15, 2013.

[2] CM Oliveira, AM Auad, SM Mendes, and MR Frizzas, “Crop losses
and the economic impact of insect pests on brazilian agriculture,” Crop
protection, vol. 56, pp. 50–54, 2014.

[3] Smriti Sharma, Rubaljot Kooner, and Ramesh Arora, “Insect pests and
crop losses,” Breeding insect resistant crops for sustainable agriculture,
pp. 45–66, 2017.

[4] Dilbar Hussain, Muhammad Asrar, Bushra Khalid, Faisal Hafeez,
Muhammad Saleem, Muazzma Akhter, Maqsood Ahmed, Imran Ali, and
Kanwal Hanif, “Insect pests of economic importance attacking wheat
crop (triticum aestivum l.) in punjab, pakistan,” International Journal
of Tropical Insect Science, vol. 42, no. 1, pp. 9–20, 2022.

[5] Kris AG Wyckhuys, Yanhui Lu, Wenwu Zhou, Matthew JW Cock,
Steven E Naranjo, Atumurirava Fereti, Frances E Williams, and
Michael J Furlong, “Ecological pest control fortifies agricultural growth
in asia–pacific economies,” Nature Ecology & Evolution, vol. 4, no. 11,
pp. 1522–1530, 2020.

[6] Denys Yemshanov, Robert G Haight, Frank H Koch, Robert C Venette,
Tom Swystun, Ronald E Fournier, Mireille Marcotte, Yongguang Chen,
and Jean J Turgeon, “Optimizing surveillance strategies for early
detection of invasive alien species,” Ecological Economics, vol. 162,
pp. 87–99, 2019.

[7] Fina Faithpraise, Phil Birch, Rupert Young, Joseph Obu, Bassey Faith-
praise, and Chris Chatwin, “Automatic plant pest detection recognition
using k-means clustering algorithm correspondence filters,” Interna-
tional Journal of Advanced Biotechnology and Research, vol. 4, pp.
1052–1062, 02 2013.

[8] Heba Al-Hiary, Sulieman Bani-Ahmad, Mohammad Ryalat, Malik
Braik, and Zainab Alrahamneh, “Fast and accurate detection and
classification of plant diseases,” International Journal of Computer
Applications, vol. 17, 03 2011.

[9] Matheus Cardim Ferreira Lima, Maria Elisa Damascena de Almeida Le-
andro, Constantino Valero, Luis Carlos Pereira Coronel, and Clara Oliva
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